《Quantum Chemistry》章末总结8

第八章是解薛定谔方程的近似方法,介绍变分法和微扰法。

Chapter 8 Approximation Methods

8.1 The Variational Method Provides an Upper Bound to the Ground-State Energy of a System

We will first illustrate the variational method. Consider the ground state of some arbitrary system. The ground-state wave function ψ0\psi_0 and energy E0E_0 satisfy the Schrödinger equation:

H^ψ0=E0ψ0\hat H \psi_0 = E_0\psi_0

We can obtain:

E0=ψ0H^ψ0ψ0ψ0E_0=\frac {\langle \psi_0|\hat H|\psi_0 \rangle}{\langle \psi_0|\psi_0 \rangle}

A beautiful theorem says that if we substitute any other function ϕ\phi for ψ0\psi_0 into the equation and calculate the corresponding energy:

Eϕ=ϕH^ϕϕϕE_{\phi}=\frac {\langle \phi|\hat H|\phi \rangle}{\langle \phi|\phi \rangle}

then EϕE_{\phi} will be greater than the ground-state energy E0E_0. In an equation, we have the variational principle:

EϕE0E_{\phi} \ge E_0

where the equality holds only if ϕ=ψ0\phi=\psi_0, the exact wave function.

The variational principle says that we can calculate an upper bound to E0E_0 by using any trial function we wish. The closer ϕ\phi is to ψ0\psi_0 in some sense, the closer EϕE_{\phi} will be to E0E_0.

We can choose a trial function ϕ\phi such that it depends upon some arbitrary
parameters, α,β,γ,\alpha,\beta,\gamma,\cdots, called variational parameters. The energy also will depend upon these variational parameters:

Eϕ(α,β,γ,)E0E_{\phi}(\alpha,\beta,\gamma,\cdots) \ge E_0

Now we can minimize EϕE_{\phi} with respect to each of the variational parameters and thus approach the exact ground-state energy E0E_0.

变分法依赖于变分原理,即试验函数的能量一定大于等于基态能量。那么对于任意给定的试验函数,总有办法令其尽可能小,尽可能接近ψ0\psi_0,则能量就会更接近E0E_0

As a example, we will use the variational method to estimate the ground-state energy of a helium atom:

H^=22me(12+22)2e24πϵ0(1r1+1r2)+e24πϵ01r12\hat H=-\frac {\hbar^2}{2m_e}(\nabla^2_1+\nabla^2_2)-\frac {2e^2}{4\pi \epsilon_0} \left(\frac 1{r_1}+\frac 1{r_2} \right)+\frac {e^2}{4\pi \epsilon_0}\frac 1{r_{12}}

The Schrödinger equation cannot be solved exactly for this system because of the term involving r12r_{12}.

We can rewrite the equation and obtain:

H^=H^H(1)+H^H(2)+e24πϵ01r12\hat H=\hat H_H(1)+\hat H_H(2)+\frac {e^2}{4\pi \epsilon_0}\frac 1{r_{12}}

where:

H^H(j)=22mej22e24πϵ01rjj=1 and 2\hat H_H(j)=-\frac {\hbar^2}{2m_e}\nabla_j^2-\frac {2e^2}{4\pi\epsilon_0}\frac 1{r_j} \quad j=1\ and\ 2

is the Hamiltonian operator for a single electron around a helium nucleus. If we ignore the interelectronic repulsion term, then the Hamiltonian operator is separable and the ground-state wave function would be:

ϕ0(r1,r2)=ψ1s(r1)ψ1s(r2)\phi_0(\boldsymbol r_1,\boldsymbol r_2)=\psi_{1s}(\boldsymbol r_1)\psi_{1s}(\boldsymbol r_2)

where:

ψ1s(rj)=(Z3πa0)1/2eZrj/a0j=1 or 2\psi_{1s}(\boldsymbol r_j)=\left(\frac {Z^3}{\pi a_0} \right)^{1/2} e^{-Zr_j/a_0} \quad j=1\ or\ 2

where a0=4πϵ02/mee2a_0=4\pi\epsilon_0\hbar^2/m_ee^2. We use these equation as a trial function using ZZ as a variational constant. Thus, we must evaluate:

E(Z)=ϕ0(r1,r2)H^ϕ0(r1,r2)dr1dr2E(Z)=\int \phi_0(\boldsymbol r_1,\boldsymbol r_2)\hat H \phi_0(\boldsymbol r_1,\boldsymbol r_2)d\boldsymbol r_1 d\boldsymbol r_2

The integral is a bit lengthy, we can get the results:

E(Z)=mee416π2ϵ022(Z2278Z)E(Z)=\frac {m_ee^4}{16\pi^2\epsilon_0^2\hbar^2}\left(Z^2-\frac {27}{8}Z \right)

It is convenient to express EE in units of mee4/16π2ϵ022m_ee^4/16\pi^2\epsilon_0^2\hbar^2. If we minimize E(Z)E(Z) with respect to ZZ, we find that Zmin=27/16Z_{min}=27/16. So we get:

Emin=(2716)2=2.8477E_{min}=-\left(\frac {27}{16} \right)^2=-2.8477

which is in good agreement with the experimental result of 2.9033-2.9033. Thus, we achieve a fairly good result, considering the simplicity of the trial function.

在氦原子能量的近似计算中,我们选择的试验函数为ϕ=ψ(r1)ψ(r2)\phi=\psi(\boldsymbol r_1)\psi(\boldsymbol r_2),试验函数表示为电子波函数的乘积,说明哈密顿算符是可分离的,即忽略了电子间的相互作用的近似,不过结果准确度还是足够令人满意的。

8.2 A Trial Function That Depends Linearly on the Variational Parameters Leads to a Secular Determinant

As another example of the variational method, consider a particle in a one-dimensional box. we should expect it to be symmetric about x=a/2x=a/2 and to go to zero at the walls. One of the simplest functions with these properties is xn(ax)nx^n(a-x)^n, where nn is an integer. Consequently, let’s estimate E0E_0 by using:

ϕ=c1x(ax)+c2x2(ax)2\phi=c_1x(a-x)+c_2x^2(a-x)^2

as a trial function, where c1c_1 and c2c_2 are to be determined variationally—that is, where c1c_1 and c2c_2 are the variational parameters. With this trial function, we can get the result:

Emin=0.125002h2ma2E_{min}=0.125\,002\frac {h^2}{ma^2}

compared with:

Eexact=0.125000h2ma2E_{exact}=0.125\,000\frac {h^2}{ma^2}

So we see that using a trial function with more than one parameter can produce impressive results. The price we pay is a correspondingly more lengthy calculation.

Fortunately, there is a systematic way to handle a trial function, which can be written generally as:

ϕ=n=1Ncnfn\phi=\sum^N_{n=1}c_nf_n

Consider:

ϕ=c1f1+c2f2\phi = c_1f_1+c_2f_2

Then:

ϕH^ϕdτ=(c1f1+c2f2)H^(c1f1+c2f2)dτ=c12H11+c1c2H12+c1c2H21+c22H22\begin{aligned}\int \phi\hat H\phi d\tau &= \int(c_1f_1+c_2f_2)\hat H(c_1f_1+c_2f_2) d\tau \\[3mm] &= c_1^2H_{11}+c_1c_2H_{12}+c_1c_2H_{21}+c_2^2H_{22} \end{aligned}

where the HijH_{ij} are given by:

Hij=fiH^fjdτ=iH^jH_{ij}=\int f_i\hat H f_j d\tau = \langle i|\hat H|j \rangle

Becasue H^\hat H is Hermitian, the HijH_{ij} are symmetric; in other words, Hij=HjiH_{ij}=H_{ji}. So:

ϕH^ϕdτ=c12H11+2c1c2H12+c22H22\int \phi\hat H\phi d\tau = c_1^2H_{11} + 2c_1c_2H_{12} + c_2^2H_{22}

Similarly, we have:

ϕ2dτ=c12S11+2c1c2S12+c22S22\int \phi^2 d\tau = c_1^2S_{11} + 2c_1c_2S_{12} + c_2^2S_{22}

where:

Sij=Sji=fifjdτ=ijS_{ij}=S_{ji}=\int f_if_j d\tau = \langle i|j \rangle

The quantities HijH_{ij} and SijS_{ij} are called matrix elements. We can calculate the corresponding energy with the expression of matrix elements:

E(c1,c2)=c12H11+2c1c2H12+c22H22c12S11+2c1c2S12+c22S22E(c_1,c_2)=\frac {c_1^2H_{11} + 2c_1c_2H_{12} + c_2^2H_{22}}{c_1^2S_{11} + 2c_1c_2S_{12} + c_2^2S_{22}}

EE is a function of the variational parameters c1c_1 and c2c_2, we differentiating E(c1,c2)E(c_1,c_2) with respect to c1c_1. We find that:

(2c1S11+2c2S12)E+Ec1(c12S11+2c1c2S12+c22S22)=2c1H11+2c2H12(2c_1S_{11}+2c_2S_{12})E + \frac {\partial E}{\partial c_1} (c_1^2S_{11}+2c_1c_2S_{12}+c_2^2S_{22}) = 2c_1H_{11}+2c_2H_{12}

Because we are minimizing EE with respect to c1c_1, E/c1=0\partial E / \partial c_1=0, so the equation becomes:

c1(H11ES11)+c2(H12ES12)=0c_1(H_{11}-ES_{11}) + c_2(H_{12}-ES_{12})=0

Similarly, differentiating EE with respect to c2c_2:

c1(H12ES12)+c2(H22ES22)=0c_1(H_{12}-ES_{12}) + c_2(H_{22}-ES_{22})=0

There is a nontrivial solution, if and only if the determinant of the coefficients vanishes:

H11ES11H12ES12H12ES12H22ES22=0\left|\begin{matrix} H_{11}-ES_{11}& H_{12}-ES_{12} \\ H_{12}-ES_{12}& H_{22}-ES_{22} \end{matrix}\right| =0

Thus, we obtain a secular determinant and a secular equation.

The quadratic secular equation gives two values for EE, and we take the smaller of the two as our variational approximation for the ground-state energy.

将选取的试验函数计算出的能量用矩阵元表示,那么最小能量的计算就转化为了久期方程的计算,这是变分法的一种通用计算套路。

Let’s go back to solving the problem of a particle in a one-dimensional box. For convenience, we will set a=1a=1. In this case:

f1=x(1x)andf2=x2(1x)2f_1=x(1-x) \quad and \quad f_2=x^2(1-x)^2

and the matrix elements are:

H11=26mS11=130H12=H21=230mS12=S21=1140H22=2105mS22=1630H_{11}=\frac {\hbar^2}{6m} \quad S_{11}=\frac {1}{30} \\[3mm] H_{12}=H_{21}=\frac {\hbar^2}{30m} \quad S_{12}=S_{21}=\frac {1}{140} \\[3mm] H_{22}=\frac {\hbar^2}{105m} \quad S_{22}=\frac {1}{630}

The secular determinant gives:

16ϵ30130ϵ140130ϵ1401105ϵ630=0\left |\begin{matrix}\frac 16 - \frac {\epsilon}{30}& \frac 1{30} - \frac {\epsilon}{140} \\[3mm] \frac 1{30} - \frac {\epsilon}{140}& \frac 1{105} - \frac {\epsilon}{630} \end{matrix}\right | =0

where ϵ=Em/2\epsilon=Em/\hbar^2. The roots of secular equation is:

ϵ=56±21282=51.065and4.93487\epsilon = \frac {56\pm \sqrt{2128}}{2} = 51.065 \quad and \quad 4.93487

We choose the smaller root and obtain:

Emin=4.934872m=0.125002h2mE_{min}=4.93487\frac {\hbar^2}{m} = 0.125\,002\frac {h^2}{m}

The excellent agreement here (remember Eexact=0.125000h2mE_{exact}=0.125\,000\frac {h^2}{m}) is better than should be expected normally for such a simple trial function.

We can also determine the normalized trial function for our variational treatment of a particle in a box:

c2c1=H11ES11H12ES12=1.13342\frac {c_2}{c_1}= -\frac {H_{11}-ES_{11}}{H_{12}-ES_{12}} = 1.13342

ϕ(x)=c1[x(1x)+1.13342x2(1x)2]\phi(x)=c_1[x(1-x)+1.13342x^2(1-x)^2]

01ϕ2(x)dx=c1201[x(1x)+1.13342x2(1x)2]2dx=1\int_0^1\phi^2(x)dx = c_1^2 \int_0^1 [x(1-x)+1.13342x^2(1-x)^2]^2 dx =1

So we can obtain:

ϕ(x)=4.40378x(1x)+4.99133x2(1x)2\phi(x)=4.40378x(1-x) + 4.99133x^2(1-x)^2

Figure 8.1 is a comparison of the optimized and normalized trial function with the exact ground-state particle-in-a-box wave function, ψ1(x)=2sinπx\psi_1(x)=\sqrt 2 \sin\pi x. The two curves are essentially the same.

QC-fig8.1

If we use a linear combination of NN functions, instead of using a linear combination of two functions as we have done so far, then we obtain NN simultaneous linear algebraic equations for the cjc_j's. We can express compactly by using the matrix notation:

Hc=ESc\mathbf H c = E\mathbf S c

where H\mathbf H is an N×NN\times N matrix with matrix elements HijH_{ij}, S\mathbf S is an N×NN\times N matrix with matrix elements SijS_{ij}, and cc is an N×1N\times 1 column matrix whose elements are cjc_j.

To have a nontrivial solution to this set of homogeneous equations, we must have:

HES=0|\mathbf H -E\mathbf S|=0

The determination of the smallest root must usually be done numerically for values of NN larger than two. This is actually a standard numerical problem, and a number of packaged computer programs do this.

当试验函数的选取更加精细,它可以表示为N个函数的线性组合,那么我们就会得到一个N阶久期行列式和N阶久期方程,同样是把它解出来并选择能量的最小值,然后就可以解出相应的试验函数。

8.3 Trial Functions Can Be Linear Combinations of Functions That Also Contain Variational Parameters

An example of a trial function for the hydrogen atom is:

ϕ=j=1Ncjeαjr2\phi = \sum_{j=1}^N c_je^{-\alpha_j r^2}

where the cjc_j's and the αj\alpha_j's are treated as variational parameters. ϕ\phi is linear only in the cjc_j but not in the αj\alpha_j. The minimization of EE with respect to the cjc_j and αj\alpha_j is fairly complicated, involving 2N2N parameters, and must be done numerically.

QC-fig8.2

试验函数可以是一系列函数的线性组合,同时每一个函数都可以另外包含一个参数。当N逐渐增大,准确度也逐渐提高,但是计算的复杂度也会提高,如何从中做出适当的取舍是另一个重要的问题。

8.4 Perturbation Theory Expresses the Solution to One Problem in Terms of Another Problem That Has Been Solved Previously

Suppose we wish to solve the Schrödinger equation for some particular system, but we are unable to find an exact solution as we have done for a harmonic oscillator, a rigid rotator, and a hydrogen atom in previous chapters. It turns out that most systems cannot be solved exactly; some specific examples are a helium atom, an anharmonic oscillator, and a nonrigid rotator.

For example, the Hamiltonain operator for a helium atom is:

H^=22me(12+22)2e24πϵ0(1r1+1r2)+e24πϵ01r12\hat H=-\frac {\hbar^2}{2m_e}(\nabla^2_1+\nabla^2_2)-\frac {2e^2}{4\pi \epsilon_0} \left(\frac 1{r_1}+\frac 1{r_2} \right)+\frac {e^2}{4\pi \epsilon_0}\frac 1{r_{12}}

and it can be written in the form:

H^=H^H(1)+H^H(2)+e24πϵ01r12\hat H=\hat H_H(1)+\hat H_H(2)+\frac {e^2}{4\pi \epsilon_0}\frac 1{r_{12}}

where:

H^H(j)=22mej22e24πϵ01rjj=1 and 2\hat H_H(j)=-\frac {\hbar^2}{2m_e}\nabla_j^2-\frac {2e^2}{4\pi\epsilon_0}\frac 1{r_j} \quad j=1\ and\ 2

Another example of a problem that could be solved readily if it were not for additional terms in the Hamiltonian operator is an anharmonic oscillator.

H^=22μd2dx2+12kx2+16γ3x3+124γ4x4\hat H=-\frac {\hbar^2}{2\mu}\frac {d^2}{dx^2} + \frac 12kx^2 + \frac 16\gamma_3x^3 + \frac 1{24}\gamma_4x^4

These two examples, with their Hamiltonian operators, introduce us to the basic idea behind perturbation theory.

In both of these cases, the total Hamiltonian operator consists of two parts, one for which the Schrödinger equation can be solved exactly and an additional term, whose presence prevents an exact solution. We call the first term the unperturbed Hamiltonian operator and the additional term
the perturbation.

We shall denote the unperturbed Hamiltonian operator by H^(0)\hat H^{(0)} and the perturbation by H^(1)\hat H^{(1)} and write:

H^=H^(0)+H^(1)\hat H = \hat H^{(0)}+\hat H^{(1)}

Associated with H^(0)\hat H^{(0)} is a Schrödinger equation, which we know how to solve, and so we have:

H^(0)ψ(0)=E(0)ψ(0)\hat H^{(0)}\psi^{(0)} = E^{(0)}\psi^{(0)}

where ψ(0)\psi^{(0)} and E(0)E^{(0)} are the known eigenfunctions and eigenvalues of H^(0)\hat H^{(0)}.

通俗地讲,微扰理论就是将复杂问题拆分,拆分为粗略的近似解+更精确的修正项。以氦原子为例,其哈密顿算符可以写成两个电子分别对核的作用(即H^H(1),H^H(2)\hat H_H(1),\hat H_H(2))加上电子的相互作用(即e2/4πϵ0r12e^2/4\pi \epsilon_0 r_{12})。前者为非微扰项,可以精确地求解,后者则为微扰项,需要通过一些方法近似得到,而两部分加起来就是总的近似结果。

8.5 Perturbation Theory Consists of a Set of Successive Corrections to an Unperturbed Problem

In this section, we shall derive the equation for a first-order correction to the energy.

In order to keep track of the order of our perturbation expansion, it is convenient to introduce a parameter λ\lambda into the Hamiltonian operator:

H^=H^(0)+λH^(1)\hat H = \hat H^{(0)} + \lambda\hat H^{(1)}

The factor λ\lambda is simply a bookkeeping device that will help us identify to what order our resultant perturbation equations are valid. We shall see that terms linear in λ\lambda give us what we call first-order corrections, terms in λ2\lambda^2 give us second-order corrections, and so on.

It’s a fact that ψn\psi_n and EnE_n will depend upon λ\lambda. We assume that we can express the ψn\psi_n and EnE_n as power series in λ\lambda, so that:

ψn=ψn(0)+λψn(1)+λ2ψn(2)+\psi_n = \psi_n^{(0)} + \lambda\psi_n^{(1)} + \lambda^2\psi_n^{(2)} + \cdots

and:

En=En(0)+λEn(1)+λ2En(2)+E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots

We can obtain:

(H^(0)+λH^(1))(ψn(0)+λψn(1)+λ2ψn(2)+)=(En(0)+λEn(1)+λ2En(2)+)×(ψn(0)+λψn(1)+λ2ψn(2)+)(\hat H^{(0)} + \lambda\hat H^{(1)})(\psi_n^{(0)} + \lambda\psi_n^{(1)} + \lambda^2\psi_n^{(2)} + \cdots) = (E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots)\times(\psi_n^{(0)} + \lambda\psi_n^{(1)} + \lambda^2\psi_n^{(2)} + \cdots)

Each side of this equation is an expresion in λ\lambda, which can be written as:

(H^(0)ψn(0)En(0)ψn(0))+(H^(0)ψn(1)+H^(1)ψn(0)En(0)ψn(1)En(1)ψn(0))λ+(H^(0)ψn(2)+H^(1)ψn(1)En(0)ψn(2)En(1)ψn(1)En(2)ψn(0))λ2+O(λ3)=0\begin{aligned} &(\hat H^{(0)}\psi_n^{(0)} - E_n^{(0)}\psi_n^{(0)})+(\hat H^{(0)}\psi_n^{(1)}+\hat H^{(1)}\psi_n^{(0)}-E_n^{(0)}\psi_n^{(1)}-E_n^{(1)}\psi_n^{(0)})\lambda \\[3mm] &+ (\hat H^{(0)}\psi_n^{(2)}+\hat H^{(1)}\psi_n^{(1)}-E_n^{(0)}\psi_n^{(2)}-E_n^{(1)}\psi_n^{(1)}-E_n^{(2)}\psi_n^{(0)})\lambda^2 + O(\lambda^3)=0 \end{aligned}

where O(λ3)O(\lambda^3) means terms of order λ3\lambda^3 and higher. Notice that both terms in the first set of parentheses, the coefficient of λ0\lambda^0, are of zero order; all four terms in the second set of parentheses, the coefficient of λ1\lambda^1, are of first order; and so on.

Because λ\lambda is an arbitrary parameter, the coefficients of each power of λ\lambda must equal zero separately. The terms in the first set of parentheses equal zero. Let’s look at the coefficent of λ1\lambda^1:

H^(0)ψn(1)+H^(1)ψn(0)=En(0)ψn(1)+En(1)ψn(0)\hat H^{(0)}\psi_n^{(1)}+\hat H^{(1)}\psi_n^{(0)}=E_n^{(0)}\psi_n^{(1)}+E_n^{(1)}\psi_n^{(0)}

The equation can be simplified considerably by multiplying both sides from the left by ψn(0)\psi_n^{(0)*} and integrating over all space:

ψn(0)H^(0)En(0)ψn(1)+ψn(0)H^(1)ψn(0)=En(1)ψn(0)ψn(0)\langle \psi_n^{(0)}|\hat H^{(0)}-E_n^{(0)}|\psi_n^{(1)} \rangle + \langle \psi_n^{(0)}|\hat H^{(1)}|\psi_n^{(0)} \rangle = E_n^{(1)}\langle \psi_n^{(0)}|\psi_n^{(0)} \rangle

The first term on the left side is equal to zero, because H^(0)E(0)\hat H^{(0)}-E^{(0)} is Hermitian, and so we get:

En(1)=ψn(0)H^(1)ψn(0)E_n^{(1)} = \langle \psi_n^{(0)}|\hat H^{(1)}|\psi_n^{(0)} \rangle

Equation gives En(1)E_n^{(1)}, the first-order correction to En(0)E_n^{(0)}. Then, the energy is given by:

En=En(0)+En(1)=En(0)+ψn(0)H^(1)ψn(0)(first order)E_n=E_n^{(0)} + E_n^{(1)} = E_n^{(0)} + \langle \psi_n^{(0)}|\hat H^{(1)}|\psi_n^{(0)} \rangle \quad (first\ order)

We can apply perturbation theory to a helium atom. For simplicity, we will consider only the ground-state energy. If we consider the interelectronic repulsion term, e2/4πϵ0r12e^2/4\pi\epsilon_0r_{12}, to be the perturbation, then the unperturbed wave functions and energies are the hydrogen-like quantities given by:

H^(0)=H^H(1)+H^H(2)ψ(0)=ψ1s(r1,θ1,ϕ1)ψ1s(r2,θ2,ϕ2)E(0)=Z2mee432π2ϵ022n12Z2mee432π2ϵ022n22\begin{aligned} &\hat H^{(0)}=\hat H_H(1) + \hat H_H(2) \\[3mm] &\psi^{(0)}=\psi_{1s}(r_1,\theta_1,\phi_1) \psi_{1s}(r_2,\theta_2,\phi_2) \\[3mm] &E^{(0)} = -\frac {Z^2m_ee^4}{32\pi^2\epsilon_0^2\hbar^2n_1^2}- \frac {Z^2m_ee^4}{32\pi^2\epsilon_0^2\hbar^2n_2^2} \end{aligned}

and:

H^(1)=e24πϵ0r12\hat H^{(1)} = \frac {e^2}{4\pi\epsilon_0r_{12}}

With Z=2Z=2, we have:

E(1)=dr1dr2ψ1s(r1)ψ1s(r2)e24πϵ0r12ψ1s(r1)ψ1s(r2)E^{(1)} = \int\int d\boldsymbol r_1 d\boldsymbol r_2 \psi_{1s}(\boldsymbol r_1)\psi_{1s}(\boldsymbol r_2) \frac {e^2}{4\pi\epsilon_0r_{12}}\psi_{1s}(\boldsymbol r_1)\psi_{1s}(\boldsymbol r_2)

This integral is a little lengthy, the final result is:

E(1)=5Z8(mee416π2ϵ022)E^{(1)}= \frac {5Z}{8} \left(\frac {m_ee^4}{16\pi^2\epsilon_0^2\hbar^2} \right)

In units of mee4/16π2ϵ022m_ee^4/16\pi^2\epsilon_0^2\hbar^2, we have:

E=E(0)+E(1)=Z2+58ZE=E^{(0)}+E^{(1)}=-Z^2 + \frac 58Z

Letting Z=2Z=2 gives 2.750-2.750 compared with our simple variational result (2.8477-2.8477) and the experiment result of 2.9033-2.9033. So we see that first-order perturbation theory gives a result that is about 5% in error.

It turns out that second-order perturbation theory gives 2.910-2.910 and that higher orders give 2.9037-2.9037. Thus, we see that both the variational method and the perturbation theory are able to achieve very good results if carried far enough.

8.6 Selection Rules Are Derived from Time-Dependent Perturbation theory

The spectroscopic selection rules determine which transitions from one state to another are possible. The very nature of transitions implies a time-dependent phenomenon, so we must use the time-dependent Schrödinger equation:

H^Ψ=iΨt\hat H \Psi = i\hbar \frac {\partial \Psi}{\partial t}

and ψn(r)\psi_n(\boldsymbol r) satisfies the time-independent Schrödinger equation:

H^ψn(r)=Enψn(r)\hat H \psi_n(\boldsymbol r) = E_n \psi_n(\boldsymbol r)

Consider now a molecule interacting with electromagnetic radiation. The electromagnetic field may be written approximately as:

E=E0cos2πνt\boldsymbol E = \boldsymbol E_0 \cos 2\pi\nu t

If μ\boldsymbol \mu is the dipole moment of the molecule, then the Hamiltonian operator for the interaction of the electric field with the molecule is:

H^(1)=μE=μE0cos2πνt\hat H^{(1)} = -\boldsymbol \mu \cdot \boldsymbol E = -\boldsymbol \mu \cdot \boldsymbol E_0 \cos 2\pi\nu t

So the H^\hat H is:

H^=H^(0)+H^(1)=H^(0)μE0cos2πνt\hat H = \hat H^{(0)} + \hat H^{(1)} = \hat H^{(0)} - \boldsymbol \mu \cdot \boldsymbol E_0 \cos 2\pi\nu t

We will se below that the time-dependent term H^(1)\hat H^{(1)} can cause transitions from one stationary state to another.

To solve the equation, we will treat the time-dependent term H^(1)\hat H^{(1)} as a small perturbation. The procedure we will use is called time-dependent perturbation theory.

For simplicity of notation we will consider only a two-state system.

Ψ1(t)=ψ1eiE1t/andΨ2(t)=ψ2eiE2t/\Psi_1(t) = \psi_1 e^{-iE_1t/\hbar} \quad and \quad \Psi_2(t) = \psi_2 e^{-iE_2t/\hbar}

Assume now that initially the system is in state 1. We let the perturbation begin at t=0t=0 and assume that Ψ(t)\Psi(t) is a linear combination of Ψ1(t)\Psi_1(t) and Ψ2(t)\Psi_2(t) with coefficients that depend upon time:

Ψ(t)=a1(t)Ψ1(t)+a2(t)Ψ2(t)\Psi(t) = a_1(t)\Psi_1(t) + a_2(t)\Psi_2(t)

where a1(t)a_1(t) and a2(t)a_2(t) are to be determined.

We substitute the equation into the time-dependent Schrödinger equataion:

a1(t)H^(0)Ψ1+a2(t)H^(0)Ψ2+a1(t)H^(1)Ψ1+a2(t)H^(1)Ψ2=a1(t)iΨ1dt+a2(t)iΨ2dt+iΨ1da1dt+iΨ2da2dt\begin{aligned} &a_1(t)\hat H^{(0)}\Psi_1 + a_2(t)\hat H^{(0)}\Psi_2 + a_1(t)\hat H^{(1)}\Psi_1 + a_2(t)\hat H^{(1)}\Psi_2 \\[3mm] = &a_1(t)i\hbar \frac {\partial \Psi_1}{dt} + a_2(t)i\hbar \frac {\partial \Psi_2}{dt} + i\hbar\Psi_1 \frac {da_1}{dt} + i\hbar\Psi_2 \frac {da_2}{dt} \end{aligned}

The first two terms on the both sides are the same, so we get:

a1(t)H^(1)Ψ1+a2(t)H^(1)Ψ2=iΨ1da1dt+iΨ2da2dta_1(t)\hat H^{(1)}\Psi_1 + a_2(t)\hat H^{(1)}\Psi_2 = i\hbar\Psi_1\frac {da_1}{dt} + i\hbar\Psi_2\frac {da_2}{dt}

We now multiply the equation by ψ2\psi_2^* and integrate over the spatial coordinates to get:

a1(t)ψ2H^(1)Ψ1dτ+a2(t)ψ2H^(1)Ψ2dτ=ida1dtψ2Ψ1dτ+ida2dtψ2Ψ2dτa_1(t)\int \psi_2^*\hat H^{(1)}\Psi_1 d\tau + a_2(t)\int \psi_2^*\hat H^{(1)}\Psi_2 d\tau \\[3mm] =i\hbar \frac {da_1}{dt} \int \psi_2^*\Psi_1 d\tau + i\hbar \frac {da_2}{dt} \int \psi_2^*\Psi_2 d\tau

Solving the equation gives:

ida2dt=a1(t)eiE2t/ψ2H^(1)Ψ1dτ+a2(t)eiE2t/ψ2H^(1)Ψ2dτi\hbar \frac {da_2}{dt} = a_1(t)e^{iE_2t/\hbar} \int \psi_2^* \hat H^{(1)} \Psi_1 d\tau + a_2(t)e^{iE_2t/\hbar} \int \psi_2^* \hat H^{(1)} \Psi_2 d\tau

The system is initially in state 1, and so:

a1(0)=1anda2(0)=0a_1(0)=1 \quad and \quad a_2(0)=0

Because H^(1)\hat H^{(1)} is considered a small perturbation, there are not enough transitions out of state 1 to cause a1a_1 and a2a_2 to differ appreciably from their initial values. Thus, as an approximation, we may replace a1(t)a_1(t) and a2(t)a_2(t) by
their initial values to get:

ida2dt=exp[i(E1E2)t]ψ2H^(1)ψ1dτi\hbar \frac {da_2}{dt} = \exp \left[\frac {-i(E_1-E_2)t}{\hbar} \right] \int \psi_2^*\hat H^{(1)}\psi_1 d\tau

微扰法的“微”字在此体现,由于扰动非常小,所以可以认为线性组合系数近似保持不变。

For convenience only, we will take the electric field to be in the z direction, in which case we can write:

H^(1)=μzE0zcosωt=μzE0z2(eiωt+eiωt)\hat H^{(1)} = -\mu_zE_{0z} \cos\omega t = -\frac {\mu_z E_{0z}}{2}(e^{i\omega t} + e^{-i\omega t})

da2dt=(μz)12E0z2i{exp[i(E2E1+ω)t]+exp[i(E2E1ω)t]}\frac {da_2}{dt} = -\frac {(\mu_z)_{12}E_{0z}}{2i\hbar} \left\{\exp \left[\frac {i(E_2-E_1+\hbar \omega)t}{\hbar} \right] + \exp \left[\frac {i(E_2-E_1-\hbar \omega)t}{\hbar} \right] \right\}

Let’s integrate the equation between 0 and t to obtain:

a2(t)=(μz)12E0z2{exp[i(E2E1+ω)t/]1E2E1+ω+exp[i(E2E1ω)t/]1E2E1ω}a_2(t) = \frac {(\mu_z)_{12}E_{0z}}{2} \left\{\frac {\exp [i(E_2-E_1+\hbar\omega)t/\hbar]-1}{E_2-E_1+\hbar\omega} + \frac {\exp [i(E_2-E_1-\hbar\omega)t/\hbar]-1}{E_2-E_1-\hbar\omega} \right\}

Because we have taken E2>E1E_2 > E_1, the so-called resonance denominators cause the second term in this equation to become much larger than the first term and to be of major importance in determining a2(t)a_2(t) when:

E2E1ω=hνE_2 - E_1 \approx \hbar \omega = h\nu

Thus, we obtain in a natural way the Bohr frequency condition we have used repeatedly. When a system makes a transition from one state to another, it absorbs (or emits) a proton whose energy is equal to the difference in the energies of the two states.

The probability of absorption or the intensity of absorption is proportional to the probability of observing the molecules to be in state 2, which is given by a2(t)a2(t)a_2^*(t)a_2(t).

P12(ω,t)=a2(t)a2(t)=(μz)122E0z2sin2[(E2E1ω)t/2](E2E1ω)2P_{1\rightarrow 2}(\omega ,t) = a_2^*(t)a_2(t) = \frac {(\mu_z)^2_{12}E_{0z}^2 \sin^2 [(E_2-E_1-\hbar\omega)t/2\hbar]}{(E_2-E_1-\hbar\omega)^2}

QC-fig8.3

上述的推导说明跃迁几率在能级能差等于hνh\nu时达到最大值,也即推出了波尔模型的频率条件。

But that is not applicable under normal conditions because the irradiating source consists of at least a narrow band of frequencies, so the equation must be averaged over this band.

一方面光源不是严格的单色光,另一方面分子解离发射荧光也会干扰吸收过程,这两点都会导致上式与实际情况产生偏差。

If we let g(ω)g(\omega) be the frequency distribution of the irradiating source, then P12(ω,t)P_{1\rightarrow 2}(\omega ,t) becomes:

P12(t)=(μz)122E0z2bandsin2[(E2E1ω)t/2](E2E1ω)2g(ω)dωP_{1\rightarrow 2}(t) = (\mu_z)^2_{12} E_{0z}^2 \int_{band} \frac {\sin^2[(E_2-E_1-\hbar\omega)t/2\hbar]}{(E_2-E_1-\hbar\omega)^2} g(\omega)d\omega

When ω=ω12=(E2E1)/\omega = \omega_{12} = (E_2-E_1)/\hbar, the P12(t)P_{1\rightarrow 2}(t) reaches its peak. So if g(ω)g(\omega) does not vary too strongly around ω12\omega_{12}, then to a good approximation, we may take g(ω12)g(\omega_{12}) out from under the integral sign and write it as:

P12(t)=(μz)122E0z2g(ω12)bandsin2[(E2E1ω)t/2](E2E1ω)2dωP_{1\rightarrow 2}(t) = (\mu_z)^2_{12} E_{0z}^2 g(\omega_{12}) \int_{band} \frac {\sin^2[(E_2-E_1-\hbar\omega)t/2\hbar]}{(E_2-E_1-\hbar\omega)^2} d\omega

Futhermore, because the integrand is peaked around ω=ω12\omega=\omega_{12}, we can write the integration limits as -\infin to \infin and write:

P12(t)=(μz)122E0z2g(ω12)sin2[(E2E1ω)t/2](E2E1ω)2dωP_{1\rightarrow 2}(t) = (\mu_z)^2_{12} E_{0z}^2 g(\omega_{12}) \int_{-\infin}^{\infin} \frac {\sin^2[(E_2-E_1-\hbar\omega)t/2\hbar]}{(E_2-E_1-\hbar\omega)^2} d\omega

The result of the integration is:

P12(t)=π2[(μz)12E0z]2tg(ω12)P_{1\rightarrow 2}(t) = \frac {\pi}{2} \left[\frac {(\mu_z)_{12}E_{0z}}{\hbar} \right]^2 tg(\omega_{12})

The spectroscopic absorption coefficient is the rate at which transitions occur, and so equals the time derivative of P12P_{1\rightarrow 2}, or:

W12=π2[(μz)12E0z]2g(ω12)W_{1\rightarrow 2} = \frac {\pi}{2} \left[\frac {(\mu_z)_{12}E_{0z}}{\hbar} \right]^2 g(\omega_{12})

This formula simply says that there must be radiation at the frequency ω12=(E2E1)/\omega_{12}=(E_2-E_1)/\hbar for a transition to occur, which is just a formal statement of the Bohr frequency condition. The equation is a form of what is called Fermi’s golden rule.

总结

这一章从开学前开始写,过了一个月才写完,主要是开学后没有很多时间看了。

本章讨论了几种近似方法,包括变分法和微扰法,理解起来比前面的章节吃力不少。


《Quantum Chemistry》章末总结8
http://argon-gas.top/p/15741.html
作者
Sun
发布于
2024年2月13日
许可协议